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Abstract

This thesls presents an analyt ical method,
which employs a numerical solution, for the estima-
tion of the plastic enclave size at the tip of a
crack emanating from an edge or an internal cavity
within an elastlic plate under various loading
conditions., The representative plastic enclave
length is based upon the Dugdale Plastic Zone
Model, The complex stress function approach of
Muskhelishvili in conjunction with conformal map-
ping techniques is employed to determine the

enclave size,

To demonstrate this analytical method, the
plastic enclave sizes are estimated for single and
twin symmetrically located radial cracks emanating
from a circular void within an elastic plate under
uniform uniaxial tension. The resulting stress
intensity data and plastic enclave sizes are pre-
sented in tabular and graphical form for a wide range
of crack dimensions and tensile loads. From numerical
convergence tests on the results, the data is judged

to be accurate to within 2%.
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Discussion is presented concerning the applica-
tion of the analytical method to estimating plastic
enclave sizes for a wide variety of problems.

Finally, an experimental approach for the verification
of analytical results is proposed which employs reflec-

tive photoelastic techniques,



I, Introduction

The presence of cracks and flaws directly in-
fluences the strength characteristics of elastic
materials, One approach to the understanding of
this phenomenon has been the study of the elastic
stress field adjacent to the crack tip. Paris and
Sin [1]1 report the stress fields as developed by
Irwin for the three basic modes of crack surface

displacement. Refer to Fig. 1. In mode I, the

opening mode, the crack surfaces move directly apart.

In mode II, the edge sliding mode, the crack surfaces

slide over each other perpendicular to the leading

edge. In mode III, the tearing mode, the crack

surfaces slide with respect to one another parallel

to the leading edge.

The Irwin stress expressions for mode I are

K _ o, 3e
gy = Var _kow 2 [l"w%m—f

K. 36
o.’,=wlz.r ,cw'% ['*M%MT]
zx:‘: er M%’ [C&v% w%‘]

(1)

plus higher order terms in r, where the corresponding

1

Numbers in brackets designate references at the end

of this thesis
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éoordinate notation is illustrated in Fig. 2. The
parameter, K, in the equations is termed the stress
intensity factor. ‘It is independent of the r and ©
coordinates but does depend upon the magnitude of
the loading force and the geometric dimensions of
the body including the crack length., The stress
intensity factor is a physical measure of the amount

of force trénsmitted throught the crack tip area.

Inspection of egs. (1) reveals a singularity
in the stresses as r approaches zero, This condi-
tion is physically impossible, and therefore, there
must be some relaxation of these "infinite stresses"
near the crack tip through the mechanism of plastic
yielding. The zone, which is adjacent to the crack
tip and in which this yielding occurs, is defined

as the plastic enclave,

Irwin [2] suggests an initial approximation for
the plastic enclave size. The normal stress, which
acts along the line of expected crack extension, is

given by egs. (1), for © = O:

K
a = fzr

By solving for r when a‘y equals the yield stress, Y,
of the participating material subjected to simple

tension, one obtains
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L(.’.‘_)?’ (2)
fys = 2\ Y
Irwin admits that rys is only a rough estimation of

the plastic enclave size but indicates its importance
for proposing a criterion for the minimum toughness
of a structure against fracture failure caused by

small flaws.

Significant progress towards the estimation of
plastic zone size has been made by Dugdale [3]. He
suggests a physical model of the plastic enclave
wherein a linear elasticity approach can be employed
to thé non-linear plasticity effect. Referring to
Fig. 3, for a very thin sheet containing a crack and
loaded perpendicular to the crack line, plastic yield-
ing is assumed to occur in a strip of elastic-perfectly
plastic material, which precedes the crack tip in a
direction coincident with the crack line, Thus, ac-
cording to Dugdale's model the plastic enclave is an
extension of the initial crack by a length, W, which
becomes larger with an increase in external load and
upon which normal tensile stresses act equal in magni-
tude to the material yield stress, Y, Dugdale then
represents the normal stress,d’y, acting at the
enclave edge, by the linear superposition of the
stresses resulting from the plastic load, Y, and the

external load, J, . He states that the Y and 0, con-

tribution tc>0§ can be determined in the form of series




A

-

in ascending powers of o having the leading terms:

2y,
g = -/ ra
v - (3)
g, = ‘%/d.
5“

where o« and A are defined by

x;:LcutL;m. Q= cmv,S

?

. -1
By setting the combination of the coefficients of o«

equal to zero, Dugdale provides a condition by which

the stress singularity at & = 0, x = L, is removed,
il.e.:
2Y
o - P/x =0 ()
o0 :

The condition (4) can be manipulated into an expression
from which the plastic enclave size can be estimated
for any given load to yield ratio and 1nitial crack

length, It 1s
A x G -
L =20 (TY) (5).

and the corresponding plastic enclave size 1is given by

oW, (6)
w = a.'C'/(:—%)
He has also conducted experiments.with steel sheets
subjected to uniaxial tension perpendicular to inter-

nal slits which tend to verify his analytical approxi-

mation,
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Rosenfleld, Dai, and Hahn [4] describe experiments
which reveallthe three-dimensional nature of the
plastic enclaves preceding notches and cracks in steel
plates under tension, Their findings help to substan-
tiate the Dugdale model as a fair representation of
actual physical plastic enclaves. From their experi-
mental results, the plastic zone appears to be a
wedge shaped plane inclined at 45 degrees to the plane
of the crack as illustrated in Fig. 4. They suggest
that the inclined plastic wedge under plane stress
conditions can be interpreted in terms of the Dugdale
horizontal plastic wedge, and the differences between
them diminish as the plastic enclave size surpasses
the plate thickness. They conclude that by transform-
ing the three-dimensional plastic region into a one-
dimensional plastic zone, the Dugdale model vastly
reduces the analytical complexity of the problem, and
therefore any inaccuracies introduced by 1its use are

tolerable.

One of the cases where the Dugdale model and
resulting plastic zone sizes are fruitfully employed
is the plasticity correction to the stress intensity
factors for a single-edge cracked specimen in tension
as developed by Kobayashi and Brown [5]. The resulting
stress intensity factors for various crack length to
specimen width ratios are consistently larger than those

obtained by elastic analysis and agree with experimental




findings.

This thesis has been undertaken to extend Dugdale's
model to the estimétion of plastic enclave sizes in the
more complex problem of cracks emanating from voids
within elastic plates. An analytical technique is de-
veloped by, which the Dugdale model can be applied to a
wide varilety of gebmetries and load conditions., To
achieve this end, the Muskhelishvili [6] complex
variable approach to plane elasticity in conjunction
with conformal mapping methods are applied to the
problem. The stress intensity factors obtained from
the elasticity solution are dependent upon the plastic
enclave size as defined by Dugdale's model, For each
set of geometric and loading conditions, the plastic
enclave size is determined such that the resulting
stress intensity factor vanishes and no "infinite
stresses" exist in the crack tip region. A specific
detalled problem is given where the plastic enclave
sizes are estimated for internal cracks emanating from
circular cavities within elastic plates under tension.
The solution for the enclave sizes of related problems
is discussed with reépect to the method presented in
this thesis, and an experimental verification technique

is proposed employing photoelasticity.




II, Analytical Development
2.1 General Approach

The estimation of the plastic enclave sizes at
the leading edges of internal cracks emanating from
a circular cavity within an infinite elastic sheet
is given to present an analytical method by which
Dugdale's model can be extended to complex geometries.
The elastic sheet is subjected to a uniform uniaxial
tensile load applied at infinity. The two specific
cases presented are shown in Fig. 5: a single and a
twin crack geometry. K The problem is immediately
separated into the linear superposition of the case
with only external loads, problem A, and that with
only plastic loads, problem B, as illustrated in Fig.
6. In this manner the stress intensity factor at a
plastic enclave tip, L, can be determined as the con-
tribution from the external load plus that from the
plastic load. The plastic enclave will then be the

length, W, for which
K=K +K, =0 (7

This insures that the stresses in the crack tip region
remain finite. The stress iIntensity factors, KA’ have
been reported by Roberts and Rich [7]. They employed

the complex variable techniques of Muskhelishvili [6]
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in a manner similar to the one explained next for the
determination of KB.
A conformal mapping function is used which trans-
forms the circular void with k symmetrically emanating
radial cracks and the infinite complex z plane exterior
to the void gnd cracks onto a unit circle and exterior
infinite # plane., The functional representation of this

transformation is
Z=w(f) (8)

where W 1s then expanded into an infinite polynomial
series in . This transformation provides a simpler
geometry upon which the boundary conditions from the

plastic enclave may be applied.

At this point, two complex stress functions, 4
and ¥ , which are holomorphic in the region exterior
to the unit circle, are defined in the # plane., The
elastic stresses in this region are given by Muskhe-
lishvili as

’54-’9-;:1»‘&,(?,(3) (9)

3
66 - ee + 2i%o - (”/«S’T:))[w(e) ") + W) ’i"(f)]

where €€ and ©6 are the normal stress components and
53' is the shear component in polar coordinates. From
the stress function ¥(f), the i}ress intensity factor at

a crack tip, = n, 1s obtained using the expression
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given by Paris and Sih [1]:

Ky = 212 Liw [w(f)-w(a)} @’'CT) (10)
4

Because only (%) is involved in (10), it is the only

stresg function which needs to be detemined,

For this boundary value problem of the first
kind, the surface tractions are specified at the bound-
ary and are related to the stress functions by the trans-

formed boundary-equation as given in [6]:

X & 9 HE— .
P+ Oy P + V() = i'“-iL (11)

where f1 + if2 represents the loading function in the
plastic zone., Muskhelishvili [6] gives the contour in-

tegral for the loading function as

i,‘“ifz_‘[(x.&iy") do (12)

where X, and y, are the vector components of the ex-

ternal tractions which act along the boundary, L,

When the surface traction is a constant normal
stress, which is precisely the problem B where Y acts
over the crack surface corresponding to the enclave

length, the same reference shows

—if O&+in34a = Yz (13)
L
where L corresponds to the clrcular edge plus adjoining

crack-(s) in the z plane. Then the loading function

is transformed to the P plane and expanded into a
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cbmplex Fourier series by

o ! > -tne v n
Il+if.-=_z'i-‘[w°)e de = _{(Jnf (14)
where Y(€) " is the transformed function, which is ex-
pressed in polér form and integrated clockwise along
the unit circle, © 1is the polar éngle in the plane,

and dn i1s the resulting Fourier coefficient.

By substituting f, + 1if, as a Fourier Series, AR D)

1
expressed as an infinite polynamnial, ¥¢$) and V¥ (38)
written as Laurent Series about ¥ = 0, into (11), an
infinite set of linear algebraic equations 1s obtained
for the determination of the coefficients of ®W(JS) .
To obtain a practical solution for ?(8), the infinite
set of equations is approximated by its partitioned set,
which consists of the first M equations in the first M
coefficients of (L) . This is accomplished by trun-
cating w($¥) to a series of N terms before applying it
to (11). The problem therefore reduces to the numerical
solution of (1l1) for the coefficients of "P(J) . Studies
are also required to learn the effect of truncating w( L)
on YP(3)s convergence. From the coefficients, @)
is easily obtained aﬁd substituted back into (10) for KB.
Using the values of X, and'KB,' which are determined
for a wide fange of O;/Y and L/R ratios, .in conjunction
with condition (7), the‘Dugdale plastic zone sizes for

various ranges of the same parameters are determined.
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In the following detailed solution, all coef-
ficients forithe various series were computed by
recursion loops on a digital computer. Refer to
the program listing in Appendix C for the specific
procedures used to calculate any particular set of

coefficients.
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2,2 Mapping Function

The mapping function which was used to map the
circular void with k symmetrically emanating radial
cracks and the infinite complex z plane, which is
exterior tq.the voild and'cracks, oﬁto a unit circle
and exterior.infinite complex ¥ plane is given by

Roberts and Rich [7] as
"o
1 £+ % -1 2l 7
Z ={I-e [ 2 +3 +rre+(isd N3 +2et 4 (15)
where k=1 corresponds to the single crack problem;
k=2 corresponds .to the twin crack problem. The
parameter, € , is a real nunber which depends upon
the crack length to void radius ratio, L/R. The Z
plane and corresponding J plane for both k=1 and 2
are shown in Fig. 7. In both cases «w(J) maps the

cracks as branch cuts.

Derivations of the following impﬁrtant properties:
of the mapping functions are given in Appendix A. The
constant,'TéZ‘ , was chosen in (15) to normalize the
geometry with respect  to R in the Z plane, Thus for a
given value of L/R in the physical problem, the value
of L in the Z plane is set equal to that ratio, The

parameter, € , is related to L by
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for k=1 2
5x)
€ = 2(L+a -1 (16)
k=2 BT
€ -—?.(;tn)-l
where A =L + 1 and € varies from + 1 when L approaches

infinity to - 1 when L approaches zero,

Referring again to Fig. 7, the transformation of
some important points are noted. In the P plane
points on the unit circle are denoted by u + iv or eie.
Thus the branch point where the crack joins the hole is
completely specified by the angle @ =0t , and the x co-
ordinate, 1 + a, is specified by ©=©" , Note that o
is the upper 1limit for o' if the entire crack is loaded

by the yileld stress,Y.

for k=1 oo = o (-€) (17)

and

, 7
xX= /I-¢ {2 tow © +i+G +(|+ca,e),l(u,_o+e)(|+¢q_e) + (u-:.n,g)/(m,e +e)}
(18)

Equation (18) was solved numerically on a digital
computer to determine o% for a given 1 + a by using o
as the upper limit, For the case of k=2, derivation
of an expression similar to (18) proved to be.too in-
voived:for practical purposes, therefore, ©* was ob-

tained numerically from the truncated mapping function.

At this point, the right hand side of (15) was

expanded into a polynomial as follows
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for k=1 _ ; y (19)
Z= c,[:+ s '+|+e +(|+g')(g‘+zeg+|)z]
To expand the radical in (19), let € =-Cma  thus
Va 2 Con oL IRV
(3‘4'163"') - J’( [ 3 <+ 3,_) [
ey, ey (20)
= 1’[("’ 3 )L(.\"g );
and by applying'a binomial expansion to each

in brackets in (20), it followed
L Ya T —e':‘“ e_ e
(s +zef+|) -{Eul [I—T‘(S)]D'T.‘(S ) ] h g

J’[l + :Z':,' S, S-“] (21)

Now, by substituting (21) into (19) and collecting.

terms, the following infinite polynamial series was
obtained.

_eT e+ I A $77] (22)
z=t[ ¢+ LM,
where the An's are real coefficients and
2
C' = 2& = ’_e R (23)-
For k=2 use was made of the expansion for k=l
indicated next. |
2 -1 2 4 r iy
;g:,/?[g +8 +rre s (+8)(ss2e8+0) ] (24)

Note that within the braces in (24), the function
is identical to that in (19) where f is replaced by 8=,
Therefore, the coefficients for that part of (24) are

equivalent in form to those in (22), Thus




Y
2 9 = 2(-m 2 (25)
'Z=/¢?{Y+,’Z”|Anf }

The problem then became finding the polynamial
whose square yields the polynomial within the braces

in (25), This was done by inspection and gave a

series of the form:

2= [ g Lm g (26)

where the Bn's are real coefficients.

Finally the polynomlal representations of the .
mapping functions were truncated to make possible the

solution of the boundary value problem., In truncated

form:
for k=1 | , N PO
2=w(s)=¢ "Z‘IOA“
(27)
k=2 i-& j-2n
2=w,(D= ,/Z" n$

nzo
To improve the accuracy of the truncated series,
the coefficients, N-2, N-1, and N, were determined in

a manner to satisfy the following conditions,

éﬁﬁs = adtuad volue = o ot 3$=1

e - - e 2 $=1 (28)

- _~¥
&M(l) - o e=6
To determine Zl", equations (19) and (24) were
differentiated twice and evaluated at 3=/ , Tﬁis

gave
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for k=1 " , c+d
zZ =¢ [l + afave ] ,
' R (29)

z =F 3+e + afive

k=2 w [ 22+ Ur3e)/[ive ]
c’

In both cases, k=1 and 2, the conditions (28)
supplied three linear algebraic equations in the
three unknown cdefficients, N-2, N-1, and N, The
first N-3 cdefficients remained those obtained from

(22) and (26), The three linear equations are

for k=1

v (30)
(u—a)b.”_l+cu-z>k”_' v DA = “oc.-n)t\“

N-3 }
W-DW-DA_+ W-D0-DA, F DA = T, 0-meA,

n*o

N-3 R
sh-.[w-s)e"] AL s'..,[u-z>e’]A”_'+ s‘u,[w-oe'] A, = .,z"o s»-.[o-n)e] A,

and for k=2
N-3
(2N-85)B +(zw-DB  + (z2N-DB = L (»—zn)%" (31)
N-2 N=-| N n:o . oy
2 -

,(2»-5)(2#-4)3”’1* (zd—h)(;d-z)%u_‘i-(z“-l)@u)n” =F - "l:.: (;-zv\)(-:.n)-bh :

N-3
T
s.:‘,[(m-s)e"]liu_: SW[(IA)-S)Q*].B”-‘-P s...[(z»-;)e‘]‘b v c = Sm[(l-zn)e‘:] B,
After the truncated polynomial mapping functions
were obtained, the complex boundary value problem was

solved using the Muskhelishvili Method.
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2.3 Boundary Value Solution

In accordance with Muskhelishvili [6], the com-
plex stress functions were represented in the region
exterior to the unit circle in the F plane by the
following Laurent Seriles:

©
ey Loy o

- " (32)
Y=L ¢, $

where the coefficients are unknown.

For problem B in both cases, k=1 and 2, the
stresses vanish as P approaches infinity. By apply-
ing this condition in conjunction with equations (9)
and (32), some of the unknown coefficients were elim-
inated as follows:

aa T— 0

(33)

p—

Tt =00 = o= 4 K 92
Differentiating (32) and then substituting into (33)
gave

n-t

z nb = O (34)
n: -

n

For (34) to hold as F approaches infinity, the follow-

ing condition must prevail upon ¢ ;

n-1 £0

(35)

and thus
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ey = L_nb s

==

] (36)

By remembering that K depends upon P8 as
| (-4
indicated by equation (10), the coefficient of f
was neglected and P($) was written in the following
re-indexed form:. '
@ -1-n
w($H=L b F (37)
n=0 n .
Noting that ?"(4) = o as f approaches infinity,
from the second equation of (9), P'¢$) was determined

to be

¥ $) =ZL°nc"5m, | (38)

ns= -

Therefore, in a manner similar to that used for (37),

¥($) was written in the following re-indexed form:

D

(39)

-j-n
W= Lt
On the unit circle, f = 3_' » and thus (39) gives
— T 1+n (l;o)'
v = Lcs

The boundary equation, (11), was then employed to
determine the remaining unknown coefficients of P($) ,
Because of the fom of 3;2;3 as given in (40), the
resulting coefficients of 33 s j<o , in (11) pro-
duced a set of linear equations, which inQolve only

combinations of the known coefficients of w(§8) ,




- 21—

the known loading function's Fourler coefficients,

and the unknown coefficients of ‘P(I) Specifically

W (41)
U+ ST R = L i d
To determine ¢(8) for k=1, it was noted that
Y acts normal to the unit circle from - ©' to o’ as
Applying (14) the Fourier Series

for the loading function fl + if2, developed as

shown in Fig. 7.

-
[Y(e)e Je [Y(e)e Je +_/Y(o3e "le + [Y (e)e 1o de

a¥-@ (42)
Homes Jactor 2

Now using

N .
Y(e) = Ye ($) = r_vLA - t'YrZ/Ahe,"'")‘e
L EY-3 6

(43)
it followed that
(-))e
Yee) = ¢ Yll A .
J!o
R . u-_',);e"
Y‘(o)=CYZ/Ps e (44)
(--')io
Y, o) = €'Y 5 Ae

J*D

By substituting (44) back into (42)

the integration
yilelded

= ~d "= - yzo 9 (l-:’-"\ - ¢ "

' N sw(l-j-»)eu O-3)ie¥ S o*
bare B9 o(Ee g s

(45)
where from(28) and (43)

. N (-_\)-e
¢ ZAe > A cen C1-1) 0% (46)

J;o
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since the imaginary part of w,($) was forced to zero

at 9=-9',.

Next using (27)

‘ ' N ]-
o (NH=CL A S

y=o
thus
. N .
Q' (H = 'L t-mA s (u7)
’30
Using (37)
> -lewn
o= L L 3
n=o n
thus

¢ = L (-l-n)l>,' " | (48)

neo

Finally applying (27), (37), (45), (47) and (48)
to equation (41) resulted in

, N -n - . - .
FLe e PEMY By £ D
n=o hso =

e i(l-n)&nfn : (49) _

neo

A study of the above expanded series multiplica-
tions revealed that N mapping terms ylelded a set of
linear algebraic equations for bo to bM where M = N - 4§,

For n> M, b, was obtained from the reduced form of (41):

Fond™ =L ¢ (50

A= M nsMs2 n

Multiplying out the series in (49) yilelded

M n N t-n 0 24m
= L {nﬁ LAn:f L(—:-n)Lng

ol -n
’ s - m n=o nso neo
né A.. L (-I-n)‘) 31 =
N ) 3" neo h _ @ nei-N 24N
L, C-mA, =Las 2 b 3 (51)
nso R L LY g o h



-2 3~

1 g+1-N
It was noted that only part of the L A, f

n*o

affects the f’ , j<o , terms of (49). Therefore

it was re-written in the following way:

nti=-N M -n-% (52)

where g, =

Substituting (52) back into (51), and then back
into (49), yielded the following set of linear equa-

tions for bn:

Index, p, varies from O to M in
M-pP
bp + '2;,0 (-l—n)g?“ bn = J?H (53)

Equations, (53) when solved simultaneously, deter-
mined the first O to M coefficients of Y@(3) ,
Equation (50) yielded the remaining, n > M, coefficients,
The third condition on the truncated mapping function
as expressed by (28), insures that the imaginary part
of w(28) equals zero at O = o™ Inserting this
fact as equation (46) into (45) enabled the convergence
of dn to zero as n approaches infinity to be shown,
See Appendix B. Therefore, in conjunction with (50),
the numerical convergence of $(8) and more important

cPQS) was assured.
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Numerical tests were run to learn the effect of
N on the‘n-th coefficient, dn' These results are
reported later and were used to determine the number
of terms in “Y(3) required to achieve the desired
accuracy. Thus ®(% was‘Eomputed by two sums:

@
ety - LT L b g (54)
. neo N ME)

For k=2, @(3) was determined in a fashion
similar to that for k=1 with the following modifica-
tions, The twin crack problem 1is Symmetric in both
loading and geometry with'réspect to the coordinate
axes. Therefore, the problem was modified to the
linear superpoéition of the twin crack with plastic
loading only on the right hand crack tip, Problem C,
plus the twin crack with plastic loading only on the
left hand crack tip, Problem D, as illustrated in
Fig. 8. It was then noted that D is exactly the same
as C where the coordinate axes are rotated Y radians.
For that amount of rotation, Muskhelishvili [6] shows

that the corresponding functional transformatilon is

] = (- (55)
@ (£) =< (-5)
Thus, for application to the solution of the

stress intensity factor as indicated by (10)

PCe) = P8 + @ (3)
, , (56)
=P+ ¢ (%)
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and the problem is solved by determining the coef-

ficients of 4L(3) .

Canparison of the ¥ planes for k=1 and k=2
as shown for C in Fig. 9, revealed that the Fourler
Series for the loading function of C is the same as
that for k=1 where the only difference comes from the

twin crack mapping function. Thus from

G-2n) 2 &
e n

N
Y(ed= Y, (8) = [c—' Y,E’o?’ (57)

where the power (1l-2n) replaces (1l-n) in (43), the
Fourier Series for C is obtalned from (45) by replac-
ing J with 2j:

Z J g - {JC-’Y [ L'B (S:(;;,:‘-;\G'_ &(l-zp:‘e" s.:'ne*)]} fn

TRy ) 5"‘. i=o (58)

where from (28) and (57)
N
Q- l“);o
Jo L 3e —FZB tow (1-2)) ¥ (59)
%o ito
since the imaginary part of g%ﬁjj was forced to zero
at ©=0%

Next using (27)

AI E S
w, () /?"2:103,.5' "

thus

N
@, ¢ Je Z/(a-z..)Bn-S“ (60)
n=o
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Using (37)
0= Lb §
thus
¢°» 2+n
¢ = X S (61)

Finally applying (27), (37), (58), (60) and (61)
to equation:(ul) resulted in

AN
o -t f(?z: B Sl-u‘ » 2+n - _
b+ e Lonbt = Lid " (62)
n=o Y zn NTO net

Expansion and multiplication of the series in (62)
revealed two independent sets of linear algebraic
equations for the»even and odd bn's. For odd n's,
l.e., b Y S b, ' . , the coefficients are all
identically equal to zero., For the even n's, N terms
in the mapping function yielded a set of linear alge-
braic equations for bo to b2M where M = N - 2, For
n> 2M, b was obtained from the reduced form of (41)
as indicated by (50):

N D I o (50)
nzaMme ns aM+ 2

where all dn's, n is even, are identically equal to zero.
Multiplying out the series in (62) yielded

M an N - 240
=L]$ L3S Lei-mb,S

n - %20 2n+i- aN

. = ob 240
(1-2n) 3"‘3 - Eg g Zl(""‘)bnf (63)

nse " n=o

N
nglo 3" $ z (-1-n) Ln 'fz"‘ =
L
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Ll an+i-anN
It was noted that only part of the L § ¥

nso

affects the ¥’ , J < 0, terms of (62), Therefore it

was rewritten in the following way:

M zn+-a 3 -3- 64
2’ 3 n "’= Z/ 3 ‘g 3-an ( )
nso ¥vn n=0 " n

where 8, = _n*

Substituting (64) back into (63),” and then back
into (62), yielded the following set of linear equa-

tions for bn where n is even:

Index p varies from O to M in
M-P
bZP + -Eﬁ (-1-2n) 3P+“I>1" = sz-n (65)
Equations (65), when solved simultaneously,

determined the first O to 2M coefficient of . (% ,
Equation (50) yielded the remaining, n > 2M, coeffi-
cients. The convergence properties for dn shown for
k=1 in Appendix B also apply to k=2. Therefore, the
numerical convergence of 4:(3) and Qici) was assured,
Convergence studies for the twin crack are reported later,
which determined Q for the number of mapping termms, N,
to yield the desired accuracy of #.($) . Thus <. (3)

was canputed by two sums:

-)-2n

M ~lean &
¢n=Lb 5 +Z b S (66)

n=Mu 2"
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2,4 Stress Intensity Factors

The stress functions for k=1 and 2 were found

in the previous section and shown as

g -n
for k=1 ¢(3)= E 'bn 9 '
=0 (67)
- ' ) —-l-27n
k=2 _ een=L b 2"
. nso 2%

These were applied to (10) to determine the stress
intensity factor at the crack tip, n=1l. The quantity
w'(?) was written in the following alternate fom to
ease the solution of (ld). Since w'$) is zero when =/,

it can be written as

0 (D = ( 2-1) g9 (68)

where q(#%) 1is a polynanial whose coefficients are
chosen such that the roots of g(%)=0 fall inside the

unit circle. Differentiating (68) yields

0" (P = (3ﬂ)3\3) + q(9 (69)
Then solving for q($) in (69) and substituting back

into (68) reveals

w' (N - (3-0[«:'(3) - (3-) 3'(3)] - (70)
For a crackltip at $=%=1 , we8) was expanded

about f=1 in equation (10); then (70) was applied to

give
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. (1__') ' (5:1):- ) ,/L_&.
K‘= 1]2'3&::;{[(0(3)' T, w(”* 2! a)(ﬁl-.‘“x';l ("'l) w’(S)

=-1fs.lu-v

{ @-0] w9 4! }
$>1

2’ ($-) W’ (D)
thus

_ ¢'<y — (71)
K, = 2 jt,
By using (29) and (67) in conjunction with (71), the
stress intensity factor at the crack tip for k=1 was

determined to be

2 a
T, -1-n) L“ (72)

n=o

K =
B

For k=2,‘?20 was found from Y _(8) by applying

equation (56); then substituted into (71) to yield

4 38 (73)
KB?- } ‘/—2:;-:‘ éo (—I-Zn) LG

Note that the stress intensity factors from (72)

and (73) are normalized with respect to Y, which multi-

plies each Fourier Series term of (45) and (58).
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2,5 Plastic Enclave Sizes

The preceding analysis and associated computer
programs determined KBk for k=1 and 2, For different
loadings at infinity and various L/R ratios, these stress
intensity factors were used to detérmine the plastié en-
clave sizes according to the condition of equation (7)

by the following method, Refer to Fig., 7.

1,) For both k=1 and 2, Ky was obtained for
various values of W/L and L/R ratios., These values are
tabulated in Tables 4 and 6 and are plotted on Figs. 10,
11, and 12, Thé actual KB values are negative, but they
are plotted positive for graphical convenience. The
stress intensity factors, XK,, were taken from reference
[7] and tabulated in Table 7. They are also shown on

Figs. 10, 11, and 12.

2.) The desifed results are to»yield W/L for
given a/R and q;/Y ratios, Therefore the following

notation is adopted.

= WL z = %/% (74)

2
Since the KBk's were computed .based upon the crack,
a, plus enclave, W, the relationship between a/R and L/R

was needed for a specific W/L. Thus



L Atw o w oL

R = R = R * L R
L % (75)
R = - y

The parameter, L/R, is tabulated for incremented
values of y between .05 and .8 and x between ,5 and 10

in Table 1.

3.) For the x's and y's chosen, the ratios of

stress intensity factors, KBk/K were obtained

Ak?
from Figs. 10, 11, and 12 at the corresponding L/R's.

Taking into account the normalizing of K with

Bk
respect to Y, the stress ratios at any a/R<—L/R
were determined from the plasticity condition on the
stress intensity factors. Namely

'a ﬂ'q;-+ Ka Y=0

A L)
thus

A K
SR (76)

where KBk is a negative number. In thié fashion
Table 8 was constructed and the plots of W/L versus
q;/Y for various a/R values were obtained and given
in Figs. 13 and 14, These plots represent the plas-

tic enclave solution based upon the Dugdale Model,
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III. Results of Analytical Analysis

The discussion of analytical results is presented

in two parts. First the convergence of data for K, as

B
obtained from the computer is evaluated. The accuracy
of these results 1s estimated. Second the magnitudes
of the resulting plastic enclaves are considered wit!

respect to the problem's dimensions,

As noted in the analytical development, the mapping
polynamial was truncated at N terms, and the stress
function was approxhnated'by a finite series of Q terms.
It remained to determine the influence of these numer-
ical approximations on the accuracy of the results,

The stress function, ¥ (3) , was the quantity initially
affected, However, the stress intensity factors, which
are directly related to the stress function's first
derivative by (10), were chosen to measure the conver-
gence of solution because of their close relation to

the plastic enclave sizes,

For k=1 the effect of the mapping function trunca-
tion was tested by varying N while fixing Q at 99.
Noting that M is a direct reflection of N since M = N - 4,
the results of this test are shown 1n Table 2a, The
maximum storage capacity of the digital computer limited
the unsegmented program to M = 24, For the trial of

M = 46 a segmented modification of the original program
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was written._ The rate of convergence for the mapping
polynomlal decreases as L/R decreases. Thus a crack
length, L/R = 2, was chosen to test the poorest condi-
tion of w($f) . One can see that in the range of M
from 15 to 46, the fluctuations in K are of the order
2 out of 270 for W/L = 0,05 and 5 out of 680 for

W/L = 0,30 for less than a 1% deviation,

The effect of the number of terms in the stress
function series was tested by varying Q such that the
terms added to the initial M, i.,e., Q-M, ranged from
0 to 275 while M was held constant at 22, Table 2b
indicates the trend evident from this study. Variations
on L/R and W/L can be seen to have had no significant
effect on the convergence of KB. In all cases the
maximun deviation between any two data are less than 2%.
Therefore, the results from the program for k=1 are as-

sumed to converge within 2% of the true value.

As a final check on the program, the results for
k=1, L/R = 10, M = 24, and Q = 99 were compared to the
closed form solution for the stress intensity factor
at the crack tip where normal stresses act on the open
surface of an internal crack. The solution is given
by Paris and Sih [1] for the case where R = o, which

corresponds to L/R approaching infinity in this plastic

enclave problem, Thus the solution for a large L/R was
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was compared to the computer program's solution for
L/R = 10. The results are reported in Table 3 and

are comparable as an approximate check,

Therefore, all of the stress intensity factors
plotted in Fig. 10 and tabulated in Table 4 were
obtained with M = 24 and @ = 99. These are assumed

to be accurate to within 2% of the true values,

For k=2, the effect of the mapping function trunca-
tion and the stress function's finite polynomial approxi-
mation on the convergence of the stress intensity factors
was studied in the same manner as previously indicated
for k=1. Once again the deviation between converging
results is less than 2% as observable in Table 5. Thus all
the stress intensity factors plotted in Figs. 11 and 12,
and recorded in Table 6 were obtained with M = 24 and
Q = 99. It is assumed that this data is also accurate

to within 2% of the true values.

Plastic enclave sizes for k=1 and 2 are tabulated
in Table 8 and represented in Figs. 13 and 14 respective-

ly. To convert the ratio of W/L to W for a given a/R,

w = 1~1a'/(l-‘lg) (773

For k=1, sufficient O, or L/R ratios is expected

use

to cause plastic yielding along the cilrcular cavity

opposite the crack, This condition was not included
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in the plastic enclave model, Therefore, only a
sample dataArange is presented to demonstrate the
method of determining enclave sizes, The range in
which the enclave model applies could be found by
first computing the stress function at z = -1, $=-1,
then applying them to equations (9) to determine the
stresses., The parameters % /Y and L/R which first
create stresses large enough to cause yielding based
upon same type of yield criterion, i.e., Tresca or
Von Mises, form the limiting boundary on the Dugdale
Model's application to the enclave solution. The de-
fining of this applicable region was not the object
of this thesis and is left open for further investiga-

tion.

When k=2, the Dugdale plastic enclave model more
closely approximates the physical problem than it does
for k=1 over the full range of loading and geometry
parameters. Therefore, the complete plastic enclave
solution is presented for all a/R ? 0.5, As a/R ap-
proaches infinity, the solution is seen to approach
the plastic zone solution by Dugdale [3] for internal
straight cracks in elastic plates under tension, For
a/R < 0.5, the physical problem approaches the determina-
tion of plastic enclaves adjacent to a circular hole in
an infinite plate under tension. For this lower range

of a/R reference [7] presented no data for K, because of
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the inherent poor convergence of the numerical system
of equatilons which determine them., Thus,the twin
numerical plastic enclave solution was limited to

a/R Z 0,5, However, the numerical methods for both
KA and KB, and thus for W/L, are applicable and easily
extended to lower ranges of a/R with the aid of a

computer with large storage capacity.

The Dugdale Internal crack solution can be seen
in Fig. 14 to approximate that for the twin crack
situation only for various fanges of a/R depending
upon the applied load. The largest variation comes
at %e /Y = 0,5 where, for example, an internal
straight crack, which is three inches in length, pos-
sesses a 0,6 inch plastic enclave at each crack tip.
When a one inch circular hole is introduced at the
crack center, the enclave size increases to 0.75
inches. This represents a 25% increase over the

straight crack estimation,
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IV, Conclusions and Possible Future Work

The analytical method and numerical solution pre-
sented in the estimation of plastic enclave sizes for
cracks emanating from a circular void within an elastic
plate under tension can be externded to handle other
configurations of loading and geometry, For example,

a solution for the representative plastic zone lengths
of the same geometrical problem subjected to a cylin-
drical bending load at infinity can be obtalned by

the appropriate changes in the boundary conditions

for solution of the elastic stress intensity factors
resulting from external locading. Variations in the
problem geometry such as internal voids of elliptical
or any arbiltrary shape can be coped with providing

it can be mapped to a unit circle in a complex plane
by a truncated polynomial, Plastic enclaves at the
tips of edge cracks in various shaped plates can also
be estimated provided they meet the same mapping require-
ment. The remainder of the analysis follows that pre-

sented for circular voids,

For each new geometric and loading configuration,
the applicability of Dugdale's plastic zone model must
be evaluated with respect to the physical problem,

Any enclave model, which wlll approximate the mode of

crack deformation and linearize the plasticity effect,
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can be incorporated into the boundary value problem
and solved by the numerical techniques presented.

E. J. Brown [8] suggests a model which employs a

thin strip along the crack line to represent the
plastic yield zone for a plane problem with arbitrary
loads in.the plane of the plate. The material in the
yielded zoné is then removed and the crack aliowed

to extend to fhe limits of the yield zone. The result-
ing plastic stresses at the yleld zone's edge are
applied as surface tractions along the crack extension.
This approach is similar to Dﬁgdale's, however, this
model includes the variations in normal tractions and
also the shear tractions which result from plastic

ylelding.

Rosenfield, Dai, and Hahn [4] vary the normal
plastic stresses in the Dugdale model to account for
strain hardening effects in the‘crack tip region,
Their modifications enable them to calculate crack
propagation parameters which more closely approximate
experimental results at high external load to yield
ratios, than does the unmodified Dugdale model. -
This type of variatioﬁ is easily incorporated into
the thesis method by proper adjustment of the loading

functions over the enclave surface.,
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In the circular void with emanating cracks problem,
the analytical results were checked against limiting
solutions found in the literature, However, a direct
experimental verification of the analytical solution
is proposed which employs reflective photoelastic
techniques. The photoelastic coating is applied to
the specimen, and then the voids plus cracks are in-
troduced to the specimen-coating combination to assure
the proper matching of boundary conditions in the
specimen and photoelastic coating material. In con-
Junction with a method for separation of stresses or
strains, i.e., oblique incidence reflective photoelas-
tic techniques or a shear difference method, the normal
reflective technique will yield the principal stresses
and/or strains at the plastic enclave region preceding
the crack tip. Application of a nlastic yield criterion,
i.e., Tresca, Von-Mises or an arbitrary establishment of
a principal plastic strain threshold, will then determine\
a representative plastic enclave length. These measure=-
ments will provide a direct experimental check of analyt-
ical results. The photoelastic method can be employed
to check any plastic enclave problem within the physical

limitations of the coating material and bonding substance,
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V, Appendices
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Appendix A _Mapping Functions

Refer to Fig. 7

= ] , i .
f———-or_k X Z2=w (2 = C[SI-S rire + (e )($v2e8 “)zJ (a)
where

L
L
E::J.[L.+z,] - (b)
Al,) Find the 1limiting values of € :
I r3
b€ = L, 4H+x@]-l = 2-1 = %]
L o> L~ oD o
—1 42 _ -
.L;..'€-.=!'12[_'+$-]'l = O0-1 =
L~>0 L.—~o @

A 2,) Find C such that R = 1 in the z plane

put $=1! into (a)

- R+L = C[(3+e)+.2]r,+e _]

for R =1 and € from (b)

R SRR (RGO
=C[2( 1+ ﬁ )l]

B
(ll'\.) L 2 (L"-?-)
.. L= 4[|+121] = 8 (L+1)

(L+2)

I
F N
2L + gL +8 -2L™ = 2 -2 L )
( (L+2)*

. (c)

! —[z_(ﬁ_’:)t-l_] . | - e
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A 3.) To Find o 1i,e,, Branch Point

use. (a) where z =1

F= e’ Cw® +2 and
at the branch point /term in (a) = 0

6 » ol
and
' o
1= 1-6 ) Cowo + 2 Um0 + w6 - 200 +l+e
-6 = LCwmO t+i+e
20z Qapd = —-2€
-f .
Lo = con (-€) (d)



~43-

A 4,) Find X (©) :

1. substitute P=u+vr into (a)

2= CI (u+iv) +(uu'u-)'l tlre +{|+(u+iv‘)-'§ i.¢+ v 4}] (e)

= C[X + g YJ ()
Real Part:
X = lL+u'_‘:'1r"+(l+e.)+[|+u_"u;‘]-c+[ﬁﬁ‘]d (g) .
where
e=F (s"+?.63+|)'l" : d = Yoy (5% ze:u)'h'
34 2ze8 4 = [-vrzeur] + [2uv+2ev]2
=a+b:s - 2 e,ix
2.: = o'+ b s wlraedd s (zv*+2 +4e)u” + (4ev”+96)
41+ (4 -2) v + vt (n)

¥ = {-4_'-1(%) . 1:...," [ 2LV + eV l

Ur*- v+ 2eu +|

/S i i ML SRS
[O-*LH] = o +dr = 2 e +

(-3

o
"
v
:
ol

(1)

A
"
~—
N
la(
e
o
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Poe b *.o.au{'

where

reduces to
a a_i._‘_ b!— -

Py
(s-a)(s-4.)
= S(s-b)

S = 'lz(a.+\>+..t.°)

]
r /2
Q.

LS 2
oz = a Jatrs b* +a”

and . i
y z_l’i =[S(s b)] -

substitute back using r, +

< = ( 4‘,;@)'/7.

( R, '/z.

2. use condition on unit circle

ioe'o.': '1 Iy
. @ + v =1

Q/Z.J +y

and obtain from (i)

vtz -ua’ . r=[1-u*
t N
ri=i-2ut+ !
subst. in for r02 in (h)
z ‘z 2
2, = a(u"+zen +e)

2, = 2(ute)

similarly for a

o
u

2u (w+e)

c = [ (q+e)(l+u)]ll’-

d = [ (u+e)07u)]VL

(J).
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substituting_(J) and unit circle condition back into (g)

3.

e ————————
X = 2u+ Gre) + ¢+w) JluredCien)  + G-uw) flwse (k)

Note that on unit circle u = cos ©
and multiplying X by ([ as indicated in (f)

obtain: |

C= i1-¢

. ]
X(e) = 1-¢ {2%9 +(14€) ¢ (H(_Q_,e)/(cq_e +e)(|+c4;,e)‘ + (I-Qn,e)‘/((ab{'é)}
(1)
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Appendix B Convergence of the Loading Function's

Complex Fourier Series

for k=1

from equation (45)

o Cy s\.,(.-,--.)o . 3)ie¥ s, ne* n
z J"f" ..,-.[ P:‘ A; ( Gym) e = )”f

where from (46)

e Z« A u—;)..e 'Z A, «Cw('-ﬁe (n)

J=o =0
substituting (n) into the quantity within braces in
(m) yields

c'y Sw Q1-3-n)E -n)e* e (1-3)0% SLA nO"
{ } ) {—;[Jzo ( Cr-j-m) n )(O)

' -
expanding sin(l-j-n)e* into si‘l(l-j)e"cose ~sino™ cos(1-j)e*

and substituing back into (o) and then (m)

e’y il ( Swn (1-3)0™ cm no* (1-3) o (1-3)6¥ sw ne*
Jn = x e ) Ci=3-n) - n C-jom)
(p)
For large negative n:
1-y-n £ n
Thus for (p)
o ne’ S no®
):, A pm(-3)e* T T+ L A 0= e G3)e* —
n" j=o d=e

(q)
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Noting from condition three in equation (28), ﬂ,,,l(?.-)=o

at o=o¥

Thus
N

o' LA simG)e* = o ()

J=o

using (r) take 1limit of d, as n—%» -

o - Sun o ¥
v L A; () Lo (-3)0% 77

j=o0 ,
o (s)

Based on (50), (s) insures the convergence of Y¥(8) as
n— - , However, Ké depends upon (P'(S) as indicated
by (10), therefore, the convergenec of Q'8 for large
negative n is desired. Differentiating (50) yields

the form of the coefficient of ¢'(%) ‘as n—%-c0

For k=2, the Fourier Series is given by (58),

which is similar to that for k=1 where j 1s replaced
by 2j. Thus the proof of convergence for (3D and

¢'(8) 1is the same as that above for k=1,
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Appendix C Application to Computer Soiution

C 1.) General Notes:

Computer programs were written for both the single
and twin crack problems with slight modifications
employed to make the convergence studies, A detailed
description of the program for k=2 is presented here,
The one for k=1 1s very similary with the major change
arising from the difference in mapping functions. It
will be kept on file by the éuthor for five years
from the date of this thesis. Thé programs were writ-
ten in the Lewiz algebraic programming language and

operated on the Lehigh University GE-225 Computer.

The various parts of the program for k=2 can
be associated to the analytical development of the
pléstic enclave sizes byvconsuiting the following
flow chart and sample listing in conjunction with

the referenced program notation.
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C 2.) Program Notation:

The following list identifies the computer program
variables corresponding to the main variables in the
analytical development. Where applicable the specific
equation number is given which refers to the most impor-
tant relationship in the solution invloving the variable.
The remaining variables, not listed, are either dummy
indexes or variables used in loops to determine the

main ones as listed.

Computer Variable Problem Variable Equation or Figure

ADD a-M (66)
A2D1 Z (29)
BB by (66)
CL /R Fig, T
COEF J< | (23)
CON 33,8y () (31)
COR {+a Fig. 7
DD d, (58)

E € (16)
EP B, (27)
FF 1 (63)
GG 9, (64)
Gl M+

G2 M+2 (66)
G3 M+3

Gl N (27)



HH
IMAG
KTP
LAMBDA
LNH

-MF

NBAR
NSTAR

0]

P
PHIPRIME1
PIP
RPE |
RWL
T
v
Vvl
vve »

w3

o
WL
ZMI
ZPRIME1
ZP1

Z2 PRIME1

-50=-

@'t
P)  pum M b @
W quwencal
YL numeand
T

3,8 %

N-1? “'l’ N (u">
W/L‘

w(-1)
w' e
w )\

wn (l)

(65)
(28)
(73)
(16)

Fig. 7

(27)

(66)

Fig. 7
(65)

(71), (72)

Fig., 7

Fig. 7
(21)

(31)

‘Fig. 7

(27)
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C 3.) Input:

The input was punched on cards following the Lewiz

format in the following order:

1st humber of L/R values
2nd number of N values
3rd Q + 1

bth initial value of W/L
5th final value of W/L
6th  increment size of W/L
7th L/R values

8th N values

C 4,) Sample Listing and Output:

As follows -
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TABLE 2
a.) Q =299, L=2,0

15 20 22 24 L6

. 05 ©.2760  ,2778 .,2770 .,2760 .2770
.30 .6885 ,6863 ,6841 ,6860 .6875

.60 L9646 ,9647
b.) M= 22
_KB
L =2.0 Q - M L = 10.0
y = .192 y = 485 y = .915
.5665 50 1.873 2.438
.5635 75 1.886 2.473
5617 100 1.898 2.4u7
«5597 150 1.893 2.455
.5586 200 1.886 2.461
.5578 250 1.896 2.463
5576 275 1.895 2.453
NOTE: N = M+ 4

"Convergence Check for Stress Intensity Factors"

k=1
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TABLE 3

y -Kcomputer -Kapprox. check
.0499 .6316 ‘ L6173
L0994 ©.8849 .8999

. 1848 ’ 1.1918 1.1919 *
. 2002 1.2374 1.2657

.2991 1.4897 | 1.5267

.4ook4 1.6956 1.7431

4852 1.8399 1.8855 &
.5009 1.8644 1.9090

«5997 2.0040 2.0073
.6990 2.1444 2.2248

.7996 2.3133 - 2.3294

.9010 2.5194 2.4280

.9153 2.552 2.473 *

* M = 22

"Approximate Check Againét Internal Straight Crack"

k=1
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TABLE 4
| -Kg

L?ﬁ\l\\ .05 .1 .2 .3 U .5

1 .207

2 277 410 ,557 .686 ,812 ,898
3 +359 . 502 .692 856 .986 1,099
4 390 .562  ,807 ,970 1,113 1.240
5 452 643 .880 1,094 1.238 1,376
10 617 .900 1,27 1.53 1l.74 1.91

"Plastic Stress Intensity Factors"”

k=1
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k=2

TABLE 5
a.) =99, L =2,0
Ky
y u 13 20 22 23 24
.10 L4020 .4008 4003 ;4015 .4oo7
.80 1.1882 11,1791 1.1723 11,1884 11,1645
be) M =24
-Kg
L=10,5 Q - M L=2.,0
y = <10 y = .80 ©y = .10 y = ,80
.2095 .5962 50 4120 1.1615
.1992 .5900 75 L4007 1.1645
.1958 .5863 100 L4039 1.1667
.2043 .5815 150 L4007 1.1707
.1983 .5782 200 Luo027 1.1742
.2027 «5755 250 JU05T7 1,1771
.1994 5743 275 4021 1,1782
"Convergence Check for Stress Intensity Factors"
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TABLE 7
'K,

L/ 1 . 2
.5 1,224 1.296
.6 1,243 1.337
.7 1.263 1.374
.8 " 1.277 1.408
.9 1,292 | 1,441

1 1,307 1.472
1.5 1.381 - 1.620
2 1.458 | 1,761
3 1.611 2.016
4 1.756 2.246
5 1.892 2.455
6 2,018 2.650
7 2.138 . 2.831
8 2.251 3.004
9 2.361 3.165
10 2.463 3.317
15 4,001
30 5.568

TAKEN FROM REF, [7]

"Elastic Stress Intensity Factors"
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FIGURE 1 Y
Y: - Y
X
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Basic Modes of Crack Surface Displacement

FIGURE 2

crack’s leading edge.

Coordinant Notation and Stress Components
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.FIGU::)3 ,
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Dugdale's Problem
Y

Iashc perfectly plostic strlp—

W W

)
LOJ‘%OL

Dugdale's Plastic Enclave Model
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" FIGURE Y4
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Iower crack surface

Comparison Between Dugdale Plastic Enclave
Model and Experimentally Based 3D

Idealized Inclined Wedge Plastic Enclave
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FIGURE 5
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Single and Twin Crack Problems
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PIGURE 6
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Solution by Linear Superposition
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FIGURE 7

Z plane

Mapping Planes for Single and Twin Cracks
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FIGURE 8
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Solution for Twin Problem B by Linear Superposition
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FIGURE 9
y Z plane
4
[5) R 7

Mapping Planes for Modified Twin Cracks
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FIGURE 10

Plastic Crack Tip Stress Intensity Factors
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FIGURE 11

Plastic Crack Tip Stress
Intensity Factors

k=2
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FIGURE 13

Plastic Enclave Sizes
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FIGURE 14

Plastic Enclave Sizes
k=2
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